273 research outputs found

    Investigating the kisspeptin system in the hermaphrodite teleost gilthead seabream (Sparus aurata)

    Get PDF
    The kisspeptin system, a known regulator of reproduction in fish, was investigated during two key phases within the gilthead seabream (Sparus aurata) life cycle: protandrous sex change and larval ontogeny. Seabream specific partial cDNA sequences were identified for two key targets, kissr4 and kiss2, which were subsequently cloned and qPCR assays developed. Thereafter, to examine association in expression with sex change, a group of adult seabream (2+ years old) undergoing sex change were sampled for gene expression at two different periods of the annual cycle. To study the kisspeptin system ontogeny during early life stages, transcript levels were monitored in larvae (till 30 days-post-hatch, DPH) and post-larvae (from 30 till 140 DPH). During sex change, higher expression of kissr4 and kiss2 was observed in males when compared to females or individual undergoing sex change, this is suggestive of differential actions of the kisspeptin system during protandrous sex change. Equally, variable expression of the kisspeptin system during early ontogenic development was observed. The higher expression of kissr4 and kiss2 observed from 5 DPH, with elevations at 5–20 and 90 DPH for kissr4 and at 5, 10, 20, and 60 DPH for kiss2, is coincident with the early ontogeny of gnrh genes previously reported for seabream, and possibly related with early development of the reproductive axis in this species

    Prevalence and dynamics of ribosomal DNA micro-heterogeneity are linked to population history in two contrasting yeast species

    Get PDF
    Despite the considerable number and taxonomic breadth of past and current genome sequencing projects, many of which necessarily encompass the ribosomal DNA, detailed information on the prevalence and evolutionary significance of sequence variation in this ubiquitous genomic region are severely lacking. Here, we attempt to address this issue in two closely related yet contrasting yeast species, the baker's yeast Saccharomyces cerevisiae and the wild yeast Saccharomyces paradoxus. By drawing on existing datasets from the Saccharomyces Genome Resequencing Project, we identify a rich seam of ribosomal DNA sequence variation, characterising 1,068 and 970 polymorphisms in 34 S. cerevisiae and 26 S. paradoxus strains respectively. We discover the two species sets exhibit distinct mutational profiles. Furthermore, we show for the first time that unresolved rDNA sequence variation resulting from imperfect concerted evolution of the ribosomal DNA region follows a U-shaped allele frequency distribution in each species, similar to loci that evolve under non-concerted mechanisms but arising through rather different evolutionary processes. Finally, we link differences between the shapes of these allele frequency distributions to the two species' contrasting population histories

    Special and inclusive education in the Republic of Ireland: reviewing the literature from 2000 to 2009

    Get PDF
    Provision for pupils with special educational needs in Ireland has undergone considerable change and review in the first decade of the twenty first century. In response to international demands for a more equitable education system which recognises diversity and considers how schools might address the needs of pupils who have been previously marginalised, Irish legislation has focused upon the development of inclusive schooling. Researchers during this period have endeavoured to understand how responses to the demand for greater inclusion have impacted upon the perceived need for change. This paper reviews the research literature for this period and identifies four key themes under which research has been conducted. The literature pertaining to these themes is explored and a possible agenda for future researchers identifie

    The involvement of tau in nucleolar transcription and the stress response

    Get PDF
    Tau is known for its pathological role in neurodegenerative diseases, including Alzheimer’s disease (AD) and other tauopathies. Tau is found in many subcellular compartments such as the cytosol and the nucleus. Although its normal role in microtubule binding is well established, its nuclear role is still unclear. Here, we reveal that tau localises to the nucleolus in undifferentiated and differentiated neuroblastoma cells (SHSY5Y), where it associates with TIP5, a key player in heterochromatin stability and ribosomal DNA (rDNA) transcriptional repression. Immunogold labelling on human brain sample confirms the physiological relevance of this finding by showing tau within the nucleolus colocalises with TIP5. Depletion of tau results in an increase in rDNA transcription with an associated decrease in heterochromatin and DNA methylation, suggesting that under normal conditions tau is involved in silencing of the rDNA. Cellular stress induced by glutamate causes nucleolar stress associated with the redistribution of nucleolar non-phosphorylated tau, in a similar manner to fibrillarin, and nuclear upsurge of phosphorylated tau (Thr231) which doesn’t colocalise with fibrillarin or nucleolar tau. This suggests that stress may impact on different nuclear tau species. In addition to involvement in rDNA transcription, nucleolar non-phosphorylated tau also undergoes stress-induced redistribution similar to many nucleolar protein

    Epigenetic Engineering of Ribosomal RNA Genes Enhances Protein Production

    Get PDF
    Selection of mammalian high-producer cell lines remains a major challenge for the biopharmaceutical manufacturing industry. Ribosomal RNA (rRNA) genes encode the major component of the ribosome but many rRNA gene copies are not transcribed [1]–[5] due to epigenetic silencing by the nucleolar remodelling complex (NoRC) [6], which may limit the cell's full production capacity. Here we show that the knockdown of TIP5, a subunit of NoRC, decreases the number of silent rRNA genes, upregulates rRNA transcription, enhances ribosome synthesis and increases production of recombinant proteins. However, general enhancement of rRNA transcription rate did not stimulate protein synthesis. Our data demonstrates that the number of transcriptionally competent rRNA genes limits efficient ribosome synthesis. Epigenetic engineering of ribosomal RNA genes offers new possibilities for improving biopharmaceutical manufacturing and provides novel insights into the complex regulatory network which governs the translation machinery in normal cellular processes as well as in pathological conditions like cancer

    Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation

    Get PDF
    Alterations in nucleoli, including increased numbers, increased size, altered architecture and increased function are hallmarks of prostate cancer cells. The mechanisms that result in increased nucleolar size, number and function in prostate cancer have not been fully elucidated. The nucleolus is formed around repeats of a transcriptional unit encoding a 45S ribosomal RNA (rRNA) precursor that is then processed to yield the mature 18S, 5.8S and 28S RNA species. Although it has been generally accepted that tumor cells overexpress rRNA species, this has not been examined in clinical prostate cancer. We find that indeed levels of the 45S rRNA, 28S, 18S and 5.8S are overexpressed in the majority of human primary prostate cancer specimens as compared with matched benign tissues. One mechanism that can alter nucleolar function and structure in cancer cells is hypomethylation of CpG dinucleotides of the upstream rDNA promoter region. However, this mechanism has not been examined in prostate cancer. To determine whether rRNA overexpression could be explained by hypomethylation of these CpG sites, we also evaluated the DNA methylation status of the rDNA promoter in prostate cancer cell lines and the clinical specimens. Bisulfite sequencing of genomic DNA revealed two roughly equal populations of loci in cell lines consisting of those that contained densely methylated deoxycytidine residues within CpGs and those that were largely unmethylated. All clinical specimens also contained two populations with no marked changes in methylation of this region in cancer as compared with normal. We recently reported that MYC can regulate rRNA levels in human prostate cancer; here we show that MYC mRNA levels are correlated with 45S, 18S and 5.8S rRNA levels. Further, as a surrogate for nucleolar size and number, we examined the expression of fibrillarin, which did not correlate with rRNA levels. We conclude that rRNA levels are increased in human prostate cancer, but that hypomethylation of the rDNA promoter does not explain this increase, nor does hypomethylation explain alterations in nucleolar number and structure in prostate cancer cells. Rather, rRNA levels and nucleolar size and number relate more closely to MYC overexpression

    Dicer Is Associated with Ribosomal DNA Chromatin in Mammalian Cells

    Get PDF
    Background: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. Methodology/Principal Findings: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA) repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES) cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer 2/2 ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. Conclusion/Significance: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since th

    Integrative genomic analysis of human ribosomal DNA

    Get PDF
    The transcription of ribosomal RNA (rRNA) is critical to life. Despite its importance, ribosomal DNA (rDNA) is not included in current genome assemblies and, consequently, genomic analyses to date have excluded rDNA. Here, we show that short sequence reads can be aligned to a genome assembly containing a single rDNA repeat. Integrated analysis of ChIP-seq, DNase-seq, MNase-seq and RNA-seq data reveals several novel findings. First, the coding region of active rDNA is contained within nucleosome-depleted open chromatin that is highly transcriptionally active. Second, histone modifications are located not only at the rDNA promoter but also at novel sites within the intergenic spacer. Third, the distributions of active modifications are more similar within and between different cell types than repressive modifications. Fourth, UBF, a positive regulator of rRNA transcription, binds to sites throughout the genome. Lastly, the insulator binding protein CTCF associates with the spacer promoter of rDNA, suggesting that transcriptional insulation plays a role in regulating the transcription of rRNA. Taken together, these analyses confirm and expand the results of previous ChIP studies of rDNA and provide novel avenues for exploration of chromatin-mediated regulation of rDNA
    corecore